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We began our investigation into hyperbolic geometry by considering
how circumferences and areas in the Poincaré disk model vary as a
function of radius, first by counting hyperbolic triangles and making
conjectures (Homework 3), then by doing a more systematic calcu-
lation using the scale factor 2

1−r2 . The result we found was that the
hyperbolic area of a circle whose radius has hyperbolic length r is

Figure 1: A triangular tiling of the
Poincaré disk model of hyperbolic
space.
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Since e−r is small compared to er for large r, it is reasonable to say
that hyperbolic areas scales exponentially with hyperbolic radii. Most
applications of hyperbolic geometry in data science use this fact as a
jumping off point. Seeing an "area" that scales exponentially with its
"radius" is a cue invoke hyperbolic geometry.

A cute demonstration of this strategy comes from drawing hierar-
chical data structures known as “trees”. As a primary school student,
you might have had to sketch out your family tree on construction
paper, an evolutionary tree for a biology assignment, or a proba-
bility tree for the likelihoods of outcomes for a sequence of tasks.
If you did, you will remember the sinking feeling you get around
layer three when you realize that you are quickly running out of
room. You would inevitably realize that the only way to salvage your
project is to make your handwriting smaller and smaller, squishing
your nodes closer and closer together, and shrinking the edges that
connect them. Though you might not have realized it at the time, by
doing this you were performing an rudimentary embedding of your
tree into hyperbolic space! Indeed, if you consider the number of
nodes in your tree to be an "area" - a reasonable interpretation if you
are going to be drawing (embedding) them on paper - and the depth
of the tree (number of edges from root to leaf node) to be the asso-
ciated "radius", then the total number nodes for a tree with k child
nodes per parent as a function of its depth r is exponential, namely
kr.

With the advent of personal computers with ever more perfor-
mant processing capabilities and pixel-dense displays, the good folks
over at the Xerox Palo Alto Research Center realized that you could
formalize this procedure into an interactive information display.
In a 1994 paper1, a pair of HCI (human-computer interaction) re- 1 [1]J. Lamping and R. Rao, Laying Out

and Visualizing Large Trees Using a
Hyperbolic Space, Proceedings of the
ACM Symposium on User Interface
Software and Technology, 1994
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Figure 2: A diagram of a tree data
structure with labels explaining the
associated jargon.

searchers describe a scheme for visualizing tree data structures by
embedding them in the Poincaré disc model of hyperbolic space. The

Figure 3: An example of a click-and-
drag interaction to bring the node
"Hicks" into the center of the Poincaré
disc model, adapted from ’Laying Out
and Visualizing Large Trees Using a
Hyperbolic Space’. At each step, the
translation isometry is followed up
with a "counter-rotation" to preserve a
canonical orientation between nodes.

appeal of such an information interface is that since the disc contains
all of hyperbolic space, the user can see the entire tree at all times,
no matter its depth or number of nodes. Moreover, every point in
the Poincaré disc can be mapped to the origin with an appropriate
isometry. Therefore, with a click-and-drag interaction (illustrated in
Figure 3), the user can focus on any node in the tree by bringing it
into the center of the disk where the scale is larger while preserving
the tree structure and the contextual information it contains.

If one were to naively implement this scheme, a peculiarity arises
that a student of hyperbolic geometry might anticipate, but a lay-
user who is used to interacting with Euclidean click-and-drag dis-
plays might find confusing: when one translates an arbitrary point
in the Poincaré disc, nearby points appear rotated compared to their
original positions relative to the dragged point. Therefore, the au-
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thors suggest composing each translation with a rotation in order
to preserve orientation between nodes before and after the trans-
lation. For an an interactive example of this type of tree visualiza-
tion where this wasn’t done, I would encourage the reader to go to
https://hyperbolic-tree-of-life.github.io

Figure 4: The tree of life visualized
with the Poincaré disk model, similar
to the scheme proposed in ’Laying
Out and Visualizing Large Trees Us-
ing a Hyperbolic Space’, but with no
counter rotation. Notice how by drag-
ging Lophotrochozoa into the center,
the vertabrates track counterclock-
wise about the origin. Adapted from
https://hyperbolic-tree-of-life.github.io

Somehow, despite the careful consideration that the authors put in,
this kind of tree visualization never really caught on. Our computers’
file directories are displayed much like their physical filing cabinet
predecessors - as nested file folders. While student of mathematics
might bemoan this missed opportunity to put hyperbolic geometry
into daily use, I would argue that from a design perspective, the
nested folder structure adapts better to standard use cases of file
directories. This is largely because search algorithms make digging
through deep file trees - whether they are visually represented by
lists or hyperbolic space - largely obsolete! On your computer, you
are never more than a few keystrokes (cmd + space on the Mac) away
from pulling up the exact file you need, no digging required!

But all is not lost! As we saw in the tree of life example, this type
of visualization excels when users are actually trying to explore the
and understand different relation between nodes. One field that I
could see greatly benefiting from this sort of visualization is Ma-
chine Learning. For those unfamiliar, at its essence the objective of
machine learning is simply function approximation. Given a collec-
tion of potentially correlated variables (the jargon being "features"
for input variables/the functions domain and "targets" for the output
variables/the codomain of the function) and a family of functions of
those variables, a machine learning algorithm "learns" which member
of the family is the best by iteratively calculating how well a member
function maps the input variables of a dataset to their outputs, and
adjusting the function’s parameters.

A central issue in ML is the interpretability of the resulting model.
In general, these are nonlinear functions of many input variables,
making them inherently difficult to visualize. One of the most inter-
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pretable classes of machine learning models are decision trees. They
get their name from the fact that they assign input data output la-
bels based on a series of decisions about the values of the features.
Geometrically, we can think of this as recursively partitioning the
input space into axes-aligned patches and assigning each patch a par-
ticular output value (see Figure 5). As these trees accumulate more

Figure 5: A decision tree of two input
variables.

and more nodes, they become more difficult to visualize. For exam-
ple Figure 6 shows the decision tree for a model trained to predict
whether a passenger of the Titantic survived as a function of their
age, sex, fare, which deck of the ship they were on, and the number
of people in their party (which it achieves with 76 percent accuracy).

Figure 6: A decision tree which kinds
of passengers survived the titantic (blue
leaves) and which did not (red leaves).

Unlike other machine learning models, you have a means of visual-
izing the function obtained, but in its current state, it is fairly hard to
explore. One could imagine applying the scheme proposed in ’Lay-
ing Out and Visualizing Large Trees Using a Hyperbolic Space’, to
create an interactive visualization of the decision rule. What is more,
a recent thrust in interpretable ML has been to find ways of interpret-
ing complex models by training simpler models on the predictions
they make. This is known as model distillation 2 and can be used to 2 Coincidentally, last Friday’s Cornell

Center for Applied Mathematics collo-
quium speaker Lester Mackey just so
happens to be a leading expert in model
distillation :)
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generate "effective decision trees". Therefore is easy to imagine a im-
plementing a general purpose workflow for interpretable ML where
one trains a complex model, creates an effective decision tree, and
then embeds it into the Poincaré disk model of hyperbolic space to be
explored. In practice, this would mean better strategies for peeking
into the "black box" of machine learning to create data products that
can be explained to domain experts, audited for bias and unfairness,
and more readily debugged and improved.


